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Abstract We use the formalism of Geometrothermodynamics to describe chemical
reactions in the context of equilibrium thermodynamics. Any chemical reaction in a
closed system is shown to be described by a geodesic in a 2-dimensional manifold
that can be interpreted as the equilibrium space of the reaction. We first show this
in the particular cases of a reaction with only two species corresponding to either
two ideal gases or two van der Waals gases. We then consider the case of a reaction
with an arbitrary number of species. The initial equilibrium state of the geodesic is
determined by the initial conditions of the reaction. The final equilibrium state, which
follows from a thermodynamic analysis of the reaction, is shown to correspond to a
coordinate singularity of the thermodynamic metric which describes the equilibrium
manifold.
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1 Introduction

The geometric nature of thermodynamics has been considered as an important ques-
tion since the pioneering works of Gibbs [1] and Caratheodory [2]. However, it was
the development of differential geometry and Einstein’s theory of General Relativity
which increased the interest to extend and develop the geometric approach to other
branches of physics. Particularly, in thermodynamics, the work of Hermann and Mru-
gala [3–5] set up the manifold called thermodynamic phase space, where the “contact
geometry” approached by Gibbs and Caratheodory becomes meaningful. Riemannian
geometry was first introduced in the space of equilibrium states by Rao [6], in 1945,
by means of a metric whose components in local coordinates coincide with Fisher’s
information matrix. In fact, the Fisher–Rao metric can be considered as an element
of the class of so-called Hessian metrics whose local components coincide with the
Hessian of an arbitrarily chosen thermodynamic potential. Rao’s original work has
been followed up and extended by a number of authors (see, e.g., [7] for a review).
The proposal coined by Quevedo [8] as Geometrothermodynamics (GTD) was essen-
tial to unify both approaches and to endow the equilibrium states manifold with a
Legendre invariant metric.

The importance of Legendre invariance lies in the thermodynamics itself, meaning
that once a representation is chosen to describe the system (for instance, the inter-
nal energy or entropy), its Legendre transform (e.g., the Gibbs free energy or the
Massieu–Planck potential) contains the same information as the original representa-
tion. Therefore, Legendre invariance should be an essential ingredient of a geometric
construction.

Basically, in the GTD approach, the thermodynamic phase space is endowed with
a Legendre invariant metric, and its maximally integral submanifold, that inherits its
metric structure, is identified with the space of equilibrium states. In essence, a point
of this space corresponds to an equilibrium state and, therefore, the thermodynamic
processes take place in the equilibrium manifold. Consequently, one expects the geo-
metric properties of the equilibrium manifold to be related to the macroscopic physical
properties. The details of this relation can be summarized in three points:

• The curvature of the equilibrium manifold reflects the thermodynamical interac-
tion.

• The phase transitions correspond to curvature singularities.
• There exists a correspondence between quasi-static thermodynamic processes and

certain geodesics of the equilibrium manifold.

The geometrothermodynamic approach has been applied to classical systems such
as the ideal gas [8] and the van der Waals gas [9], to more exotic systems such as black
holes [10], and also in the context of relativistic cosmology to describe the evolution
of our Universe [11]. In all the cases, in which the analysis have been performed
completely, the summarized items have been confirmed and the results have been
shown to be Legendre invariant.

In this paper, we aim to describe the geometry behind a chemical reaction. First,
we will consider the case of a reaction with only two species, and then we will show
that our results can be generalized to include any arbitrary finite number of species.

123



J Math Chem (2014) 52:141–161 143

The paper is organized as follows. In Sect. 2, we present a review of the geometrother-
modynamic structures and the classical thermodynamics approach to chemical reac-
tions; particularly, we analyze the reaction A(g)

−⇀↽− B(g) in the context of classical
thermodynamics. In Sects. 3 and 4, we consider the case of a reaction with two species
corresponding to ideal gases and van der Waals gases, respectively. In both cases, we
present the thermodynamic analysis of the reaction and analyze the same situation
from the point of view of GTD. It is shown that each reaction can be represented by
a geodesic in the equilibrium manifold. Then, in Sect. 5, we show the applicability of
GTD to a general chemical reaction. Finally, Sect. 6 is devoted to the conclusions.

2 Theoretical aspects

2.1 Geometrothermodynamics

The idea behind the geometrization of a thermodynamic system is simple: to build
a space where each point corresponds to an equilibrium state. The physics behind
the equilibrium thermodynamics allows us to say that this space is an n-dimensional
manifold with the dimension corresponding to the number of thermodynamic degrees
of freedom of the system. In consequence, one needs only n independent variables to
coordinatize the manifold.

In standard equilibrium thermodynamics, to a system with n degrees of freedom it is
possible to associate n extensive variables Ea, n intensive variables I a , where the index
a runs from 1 to n, and a thermodynamic potential Φ, relating them. In this context, the
terms extensive and intensive are general concepts that refer to the independence or
dependency of the variables associated to a given potential. For example, for a closed
simple system with two degrees of freedom, the independent variables are T and P ,
if the potential chosen to describe the system is G, or U and V if the fundamental
potential is S. Recall that G = G(T, P) and S = S(U, V ).

Consequently, from the point of view of thermodynamics, to a system with n degrees
of freedom we associate 2n+1 variables, n of them being independent. Geometrically,
this idea corresponds to an embedding ϕ of an n-dimensional manifold E into a (2n +
1)-dimensional manifold T given by

ϕ : E −→ T , (1)

or, in coordinates,

ϕ : {Ea} −→ {Φ(Ea), I b(Ea), Ea}, (2)

where b also goes from 1 to n. The manifold T is a contact manifold [3]. This means
that T is endowed with a family of tangent hyperplanes (contact structure) defined by
the so-called fundamental 1-form Θ that satisfies the non-integrability condition

Θ ∧ (dΘ)n �= 0. (3)
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The manifold T is called the thermodynamic phase space. It can be coordinatized
by the 2n + 1 variables {Z A} = {Φ, Ea, I a}, where A = 0, . . . , 2n. Its existence
is relevant because it results adequate to perform Legendre transformations (as in
thermodynamics) as a change of coordinates. Formally, a Legendre transformation
is a contact transformation, i.e., a transformation which leaves the contact structure
unchanged; in coordinates {Z A}, it is defined as [12]

{Z A} → {Z̃ A} = {Φ̃, Ẽa, Ĩ a} (4)

Φ = Φ̃ − δkl Ẽk Ĩ l, Ei = − Ĩ i, E j = Ẽ j, I i = Ẽ i, I j = Ĩ j, (5)

where i ∪ j is any disjoint decomposition of the set of indices {1, . . . , n}, and k, l =
1, . . . , i .

According to the Darboux theorem [3], the 1-form Θ of Eq. (3) can be given in the
coordinates {Z A} as:

Θ = dΦ − IadEa, (6)

where we use Einstein’s summation convention for repeated indices. It can easily be
seen that after a Legendre transformation, the new 1-form Θ̃ in coordinates {Z̃ A} reads

Θ̃ = dΦ̃ − ĨadẼa . (7)

This proves that the contact structure remains unchanged.
On other hand, the manifold E is the maximally integral submanifold of T , and is

defined in such a way that the properties of the thermodynamic systems are encoded
in it. So far, we have seen that E is specified through the embedding (1), which is
equivalent to specifying the fundamental equation of the system Φ(Ea). The next
step is to introduce the relations of standard equilibrium thermodynamics into the
definition of the manifold. To this end, we demand that the embedding (1) satisfies the
condition

ϕ∗(Θ) = 0, (8)

where ϕ∗ is the pullback of ϕ. In coordinates, it takes the form

ϕ∗(Θ) = ϕ∗ (
dΦ − IadEa) =

(
∂Φ

∂ Ea
− Ia

)
dEa = 0. (9)

It follows immediately that

Φ = Φ(Ea) and
∂Φ

∂ Ea
= Ia . (10)

Equations (9) and (10) constitute the standard Gibbs relations of equilibrium thermo-
dynamics in E , namely,
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dΦ = IadEa . (11)

The manifold E defined in this way is called the space of equilibrium states.
In addition to the geometric description of thermodynamics in terms of a contact

structure, the GTD program promotes the contact manifold (T ,Θ) into a Riemannian
contact manifold (T ,Θ, G), where G is a metric sharing the symmetries of Θ . The
most general metric invariant under total and partial Legendre transformations that
has been found so far is given by [13]

G = Θ ⊗ Θ + Λ
(

Z A
) n∑

a=1

[(
Ea Ia

)2k+1 dEa ⊗ dIa

]
, (12)

where Λ(Z A) is an arbitrary Legendre invariant function of the coordinates Z A and
k is an integer. The corresponding induced thermodynamic metric in the space of
equilibrium states is given by

gΦ = ϕ∗(G) = Λ(Ea)

n∑

a,b=1

[(
Ea ∂Φ

∂ Ea

)2k+1
∂2Φ

∂ Ea∂ Eb
d Ea ⊗ dEb

]

. (13)

As suggested in [13], this metric could be useful to analyze multicomponent sys-
tems, particularly systems where chemical reactions take place. We will show in the
next sections that, in fact, chemical reactions can be represented as geodesics of the
equilibrium manifold described by the metric (13).

Notice that to compute the explicit components of this metric, it is necessary to
specify only the fundamental equation Φ = Φ(Ea). Thus, all the geometric properties
of the equilibrium space are determined by the fundamental equation. This is similar
to the situation in classical thermodynamics where the fundamental equation is used
to determine all the equations of state and thermodynamic properties of the system.

Notice that the metric G contains the arbitrary parameter k which, however, can
be absorbed by renaming the coordinates as d Xa = (Ea)2k+1d Ea and dYa =
(Ia)2k+1d Ia . Then,

G = Θ ⊗ Θ + Λ(Z A)

n∑

a=1

(
dXa ⊗ dYa

)
. (14)

Furthermore, the arbitrary function Λ(Z A) can be fixed by demanding invariance
with respect to changes of representation, an issue which is outside of the scope of
the present work [14]. It is therefore possible to perform the entire analysis with an
arbitrary function Λ(Z A) in coordinates Z A = (Φ, Xa, Ya); however, the physical
interpretation of these coordinates becomes cumbersome and makes it difficult to find
the physical interpretation of the results. For the sake of simplicity, we will use in this
work the particular choice k = −1 and Λ = −1, which has been shown to be useful
also to describe geometrically systems like the ideal gas or van der Waals gas [13].
Then, in the particular case n = 2, the metric of the equilibrium manifold reducesto
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gΦ = −
(

E1 ∂Φ

∂ E1

)−1
∂2Φ

∂(E1)2 d E1 ⊗ d E1 −
(

E2 ∂Φ

∂ E2

)−1
∂2Φ

∂(E2)2 d E2 ⊗ d E2

−
[(

E1 ∂Φ

∂ E1

)−1

+
(

E2 ∂Φ

∂ E2

)−1
]

∂2Φ

∂ E1∂ E2 d E1 ⊗ d E2. (15)

To analyze the geometric properties of the equilibrium manifold, we will consider
the connection and the curvature. In particular, the connection is used to represent the
geodesic equations in a given coordinate system

d2 Ea

dτ 2 + Γ a
bc

d Eb

dτ

d Ec

dτ
= 0 , Γ a

bc = 1

2
gad

(
∂gdb

∂ Ec
+ ∂gdc

∂ Eb
− ∂gbc

∂ Ed

)
, (16)

where Γ a
bc are the Christoffel symbols. The solutions of these equations are the geo-

desics Ea(τ ), where τ is an affine parameter along the trajectory. One of the main goals
of the present work is to show that a given chemical reaction can be represented geo-
metrically as a family of geodesics of the equilibrium manifold, which is determined
by the fundamental equation of the chemical system.

The curvature tensor is defined as

Ra
bcd = ∂Γ a

bd

∂xc
− ∂Γ a

bc

∂xd
+ Γ a

ecΓ
e
bd − Γ a

edΓ e
bc. (17)

In GTD, the curvature tensor of the equilibrium manifold is expected to be a measure of
the interaction between the components of the thermodynamic system. Furthermore,
from the curvature tensor one can define the Ricci tensor Rab = gcd Racbd and the
curvature scalar R = gab Rab. Notice that in the case of a two-dimensional space, the
curvature tensor has only one independent component, say R1212 and, therefore, the
Ricci tensor and the curvature scalar are proportional to R1212.

2.2 Thermodynamics of chemical reactions

Consider the general chemical reaction

a1A1 + a2A2 + . . . −⇀↽− b1B1 + b2B2 + · · · , (18)

in which the a1, a2, . . . are the stoichiometric numbers of the reactants A1, A2, . . ., and
b1, b2, . . . are the stoichiometric coefficients of the products B1, B2, . . ., respectively.
Notice that the species need not all to occur in the same phase. The main condition
for the chemical-reaction equilibrium in a closed system is that [15]

∑

i

νiμi = 0, (19)

where the coefficients νi = (−a1,−a2, . . . , b1, b2, . . .) refer to the stoichiometric
numbers and μi = (μA1 , . . . , μB1 , . . .) represents the chemical potential of the i-
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species. Notice that the condition (19) holds no matter how the closed system reaches
its final equilibrium state. During a reaction, the change of numbers of moles of the
species i,Δni = ni − ni,0, where ni,0 is the number of moles of species i at the
beginning of the reaction, is proportional to the stoichiometric number νi with the
extent of reaction ξ as the proportionality factor, Δni = νiξ . For an infinitesimal
extent of reaction dξ , it holds that dni = νi dξ . The fact that the extent of reaction
can be treated as an infinitesimal quantity is essential for the geometric description
we will present below.

The main premise to apply classical thermodynamics in closed systems, where
chemical reactions can occur, is that we can use thermodynamic variables to describe
the system even if it is not in material equilibrium. It means that variables such as
U, S, T, V , etc., are completely defined at any extent of reaction.

Though (19) is useful for practical situations, it does not contain information about
the behavior of the different thermodynamic potentials from initial conditions to equi-
librium. To obtain this information, we will use the fundamental equation of the chem-
ical system. Let ΦA j (Ea

A j
) represents the fundamental equation of the species A j .

Then, the fundamental equation for the general reaction (18) can be constructed as
follows

Φ(Ea
A1

, Ea
A2

, . . .) = ΦA1(Ea
A1

) + · · · + ΦB1(Ea
B1

) + · · · + ΦA1,A2(Ea
A1

, Ea
A2

) + . . .

+ΦA1,B1(Ea
A1

, Ea
B1

) + · · · + ΦA1,A2,B1(Ea
A1

, Ea
A2

, Ea
B1

) + · · · .

(20)

Notice that in this expression we are taking into account all possible interactions
between all the species. The only assumption is that the interaction between the species
A j and Ak depends on the variables Ea

A j
and Ea

Ak
, only. It seems that this condition

is not very restrictive in realistic situations.
In the last subsection, we emphasized the role of the Legendre transformations

from the geometrical point of view. Now, we will mention their importance from the
thermodynamic point of view.

1. It does not matter which potential Φ(Ea) is chosen to describe a particular system,
all of them will contain the same thermodynamic information.

2. The prediction of the final equilibrium state is made in accordance with the
“extremum principles”; these principles could be different for different poten-
tials. The importance of the Legendre transformations is that they always can be
used to find a potential in which the extremum principles hold for the experimental
working conditions.

For later use, we summarize here the “extremum principles” [16]:

• Entropy maximum principle. The equilibrium value of any internal unconstrained
parameter is such as to maximize the entropy for the given value of the total internal
energy.

• Energy minimum principle. The equilibrium value of any internal unconstrained
parameter is such as to minimize the energy for the given value of the total entropy.
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• General minimum principle for the legendre transforms of the energy. The equi-
librium value of any unconstrained internal parameter is such as to minimize the
Legendre transform of the internal energy for a constant value of the transformed
variable(s).

• General maximum principle for the legendre transforms of the entropy. The equi-
librium value of any unconstrained internal parameter is such as to maximize the
Legendre transform of the entropy for a constant value of the transformed vari-
able(s).

Consequently, we can talk about Legendre invariance in two senses. Firstly, in the
sense that the thermodynamic information remains conserved under a Legendre trans-
formation and, secondly, in the sense that the same equilibrium value for one or
several internal unconstrained parameters will be obtained, independently of the ther-
modynamic potential Φ, under the condition that the experimental restrictions are in
accordance to the particular restrictions contained in the “extremum principle” for Φ.

In addition to the classical analysis, there is the modern point of view established
mainly by Prigogine [17], who states that a chemical reaction is a spontaneous process
characterized by a monotonic evolution of the potential Φ and the condition

di S = − 1

T

n∑

j=1

ν jμ j dξ ≥ 0. (21)

where the equality is obtained at the final equilibrium state [see (19)]. In the above
equation, di S refers to the infinitesimal change of internal entropy. These conditions
can be related directly with the classical thermodynamic’s idea of joining the initial
and final equilibrium states through a trajectory (quasistatic processes); in general, the
trajectories must satisfy the Prigogine statements.

In the following sections, we will study the chemical reaction A(g)
−⇀↽− B(g) con-

sidering A and B either as ideal monoatomic gases or as van der Waals monoatomic
gases.

3 Ideal gases

3.1 Thermodynamics

If we consider the species as ideal gases, the corresponding fundamental equation for
each species in the entropy representation reads [16]:

S(U, V, n) = ns0 + n R ln

[(
U

U0

)c (
V

V0

)(
n

n0

)−(c+1)
]

, (22)

where s0, U0, V0 and n0 refer to the standard values of reference, c is a dimensionless
constant related to the heat capacity of the ideal gas, i.e., Cv,n = c R, and R is the
universal gas constant.
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Table 1 Conditions for the
gases A and B

Gas A B

Initial moles (mol) 1 0

Heat capacity c 3
2

3
2

Molar standard entropy (J/mol-K) 1 2

Standard internal energy (J) 1 2

Let us consider the particular case in which only two species take part in the reaction.
It turns out that it is convenient to study the evolution of the total entropy in terms of
the extent of reaction. According to Eq.(20), the fundamental equation takes the form

S(UA, VA, UB , VB , ξ) = S(UA, VA, ξ) + S(UB , VB , ξ)

= (n A,0 − ξ)s0,A

+(n A,0 − ξ)R ln

[(
UA

U0,A

)cA
(

VA

V0,A

) (
n A,0 − ξ

n0,A

)−(cA+1)
]

+(nB,0 + ξ)s0,B

+(nB,0 + ξ)R ln

[(
UB

U0,B

)cB
(

VB

V0,B

) (
nB,0 + ξ

n0,B

)−(cB+1)
]

,

(23)

where we neglected the interaction term for simplicity, and introduced explicitly the
variable extent of reaction ξ . Note that ni,0 refers to the initial conditions and n0,i

refers to the values of the state of reference. For simplicity the values for n0,i and
V0,i are set equal to one. Moreover, the values for U0,i and s0,i -which depend on
the nature of each gas [18]—are chosen in such a way that they basically take into
account the differences between the species. These and other values are shown in
Table 1. Finally, we take the temperature as TA = TB = T = 300 K and the volume
as VA = VB = V = 20 L, experimental conditions that can easily be achieved. With
these conditions, the fundamental equation reduces to

S(ξ) = 1 + ξ + R (1 − ξ) ln

(
4.58 × 106

1 − ξ

)
+ R ξ ln

(
1.62 × 106

ξ

)
, (24)

where the value of the constants have been rounded to simplify the presentation. A
plot of this function is displayed in Fig. 1a.

Since the temperature is constant and cA = cB , the total internal energy is constant.
Thus, according to the “entropy maximum principle”, we have that the maximum of
S, as a function of the extent of reaction, corresponds to the equilibrium condition. In
this case, S reaches it maximum value S f at ξ = ξ f ≈ 0.285.

To illustrate the significance of Legendre invariance, we can analyze other potentials
that are obtained from S by means of Legendre transformations. Consider, for instance,
the Massieu potential (Helmholtz free energy)
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(a) (b)

Fig. 1 Behaviour of the thermodynamic potentials for the reaction A
(g)

−−⇀↽−− B
(g)

at T = 300 K considering

A and B as ideal gases. a Evolution of the Entropy potential. b Evolution of the Massieu potential

φ : = S − 1

T
U

= p

T
V −

∑

i

μi

T
ni . (25)

Considering the assumption (20) with no interacting term, we obtain

φ(β, V, n A, nB) = φA(β, V, n A) + φB(β, V, nB)

= pA

T
V + pB

T
V − μA

T
n A − μB

T
nB, (26)

where β = 1

T
. To calculate explicitly this function we use

μi (Ui , V, ni ) = −T
∂Si

∂ni
(27)

pi (Ui , V, ni ) = T
∂Si

∂V
(28)

Ui = ci Rni

β
. (29)

In this way, the fundamental equation of the system is:

φ (β, V, n A, nB) =
∑

i=A,B

ni

{

s0,i + R ln

[(
β i

0

β

)c (
ni

n0,i

)−1
(

V

V i
0

)]

− cR

}

.

(30)

Taking into account the considerations discussed for the entropy representation,

and the value β = 1

300
K −1, finally the fundamental equation in this representation is

reduced to
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φ(ξ) = −11.47+ξ+R (1 − ξ) ln

(
4.58 × 106

1 − ξ

)
+R ξ ln

(
1.62 × 106

ξ

)
, (31)

where again we have rounded the values of the constants for simplicity. The plot of this
function is displayed in Fig. 1b. In this case, the transformed variable of the Legendre
transform is β, and since it is a constant, the maximum of φ(ξ) corresponds to the
equilibrium state, which is reached at ξ = ξ f ≈ 0.285. Thus, in agreement with the
Legendre invariance, we obtain the same result as in the entropy representation.

The main result of this thermodynamic analysis is that a system with initial para-
meters as given in Table 1, which correspond to an entropy Sin , undergoes a chemical
reaction at constant T whose final state is the equilibrium state characterized by the
reaction extent ξ ≈ 0.285 and the entropy S f . Notice that for ξin < ξ f ( ξin > ξ f )
all the states with ξ > ξ f (ξ < ξ f ) are not permitted. Notice also that the thermody-
namic trajectories satisfy the Prigogine statements. In fact, once the system reaches
the final equilibrium state at ξ = ξ f , the chemical reaction ends, and the states char-
acterized by a decrease of entropy are unphysical according to the second law of the
thermodynamics.

3.2 Geometrothermodynamics

Recall that to construct the metric of the equilibrium manifold we only need the
fundamental equation. Under the restrictions corresponding to the chemical reaction
of two ideal gases as described in the last subsection, the original fundamental equation
(23) reduces to a function that depends on two variables only, namely,

S(U, ξ) = 1 + ξ + (1 − ξ) R ln

(
20 U 3/2

1 − ξ

)
+ ξ R ln

(
5
√

2 U 3/2

ξ

)

, (32)

where we used the variable U = UA + UB = c(n A + nB)RT to rewrite the variables
UA and UB as

UA = n A,0 − ξ

n A,0 + nB,0
U , UB = nB,0 + ξ

n A,0 + nB,0
U. (33)

In the entropy representation Φ = S, we choose the independent variables as Ea =
{U, ξ}. Then, the metric of the equilibrium space (15) for the chemical reaction of two
ideal gases reduces to

gig
S = dU 2

U 2 + Rdξ2

ξ2 (1 − ξ)
[
1 − R ln(2

√
2 ξ) + R ln(1 − ξ)

] . (34)
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For the metric (34) the only non-vanishing Christoffel symbols are Γ U
UU and Γ

ξ
ξξ .

Then, the geodesic equations read

d2

dτ 2 U (τ ) − 1

U

(
d

dτ
U (τ )

)2

= 0, (35)

d2

dτ 2 ξ(τ ) +
R − (2 − 3ξ)

(
1 − R ln 2

√
2 ξ

1−ξ

)

2ξ(1 − ξ)
(

1 − R ln 2
√

2 ξ
1−ξ

)
(

d

dτ
ξ(τ )

)2

= 0. (36)

The main point now is to see whether the geodesic equations can reproduce the
thermodynamic process that occur during a chemical reaction. The idea is that we use
the initial values of the thermodynamic variables, corresponding to the initial equi-
librium state of the chemical reaction, to identify a particular point in the equilibrium
manifold. This point is then used as initial value to integrate the geodesic equations.
The question is whether the solution of the geodesic equations passes through the final
equilibrium state of the chemical reaction.

For the particular case of ideal gases we are investigating here, we found in the last
subsection that the thermodynamic analysis establishes the value of the extent of reac-
tion ξ f ≈ 0.285 for the final state. The values of the initial state have been incorporated
in the fundamental Eq. (32) and, consequently, in the thermodynamic metric (34) and
in the geodesic equations. We now consider the “experimental” condition T = 300 K.
Taking account that the system (35)–(36) corresponds to two independent ordinary
differential equations, we can solve them separately. To maintain the “experimental”

condition along the geodesic we introduce the initial conditions U (0) = 3

2
8.314 300 J

and U̇ (0) = 0 in (35), and then we proceed to solve numerically the remaining geo-
desic Eq. (36) for ξ . The results are displayed in Fig. 2a, b. We choose as initial
conditions values very close to ξ(0) = 0 and ξ(0) = 1 (since the reaction can go

(a) (b)

Fig. 2 Behaviour of the geodesic solution in the Entropy representation, for the reaction A
(g)

−−⇀↽−− B
(g)

at T = 300 K considering A and B as ideal gases. a Solution of the geodesic Eq. (36) for ξ(0) = 0.01 and
different initial “velocities” ξ̇ (0). b Solution of the geodesic Eq. (36) for ξ(0) = 0.99 and different initial
“velocities” ξ̇ (0)
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in both directions), and different arbitrary initial “velocities” dξ(0)/dτ = ξ̇ (0). The
important result is that all the geodesics reach the point ξ f ≈ 0.285, independently
of the initial values of ξ and ξ̇ , and all of them follow a pattern in the physical region
between the initial value and ξ f , where the entropy increases. In fact, the numerical
integrator finds always a “singularity” at the point ξ ≈ 0.285. We will see below that
in fact this point corresponds to a coordinate singularity of the thermodynamic metric.

We now test the Legendre invariance of our analysis by using the Massieu potential
(30). We insert the conditions for the present chemical reaction and obtain the corre-
sponding fundamental equation. In this case, Ea = {β, ξ} and the metric (15) leads
to

gig
φ = dβ2

β2 − R dξ2

ξ2(1 − ξ)[1 + R ln(2
√

2 ξ) − R ln(1 − ξ)] . (37)

The only non-vanishing Christoffel symbols are Γ
β
ββ and Γ

ξ
ξξ . Then, the geodesic

equations are

d2

dτ 2 β(τ) − 1

β

(
d

dτ
β(τ)

)2

= 0, (38)

d2

dτ 2 ξ(τ ) −
R + (2 − 3ξ)

(
1 + R ln 2

√
2 ξ

1−ξ

)

2ξ(1 − ξ)
(

1 + R ln 2
√

2 ξ
1−ξ

)
(

d

dτ
ξ(τ )

)2

= 0. (39)

We now fix the “experimental” condition through the initial conditions β(0) =
1

300
K−1 and β̇(0) = 0, so that the Eq. (38) is satisfied identically. And then we

proceed to solve numerically the remaining Eq. (39) for ξ . The initial conditions are
the same as in the entropy representation. The results are displayed in Fig. 3a, b. We

(a) (b)

Fig. 3 Behavior of the geodesic solution in the Massieu Potential representation, for the reaction
A

(g)
−−⇀↽−− B

(g)
at T=300 K considering A and B as ideal gases. a Solution of the geodesic Eq. (38)

for ξ(0) = 0.01 and different initial “velocities” ξ̇ (0). b Solution of the geodesic Eq. (38) for ξ(0) = 0.99
and different initial “velocities” ξ̇ (0)
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see again that all the geodesics pass through the point ξ f ≈ 0.285, independently of
the initial values. Moreover, in the physical region, before the final equilibrium state
is reached, they all coincide with the geodesics shown in Fig. 2a, b for the analysis in
the entropy representation. This shows explicitly that the analysis does not depend on
the choice of thermodynamic potential.

A straightforward computation shows that the curvature tensor vanishes in both
representations and, consequently, the corresponding equilibrium space is flat. This
indicates that no thermodynamic interaction exists in a chemical reaction in which
only non-interacting ideal gases are involved.

4 Van der Waals gases

4.1 Thermodynamics

A more realistic gas is described by the van der Waals fundamental Eq. [16]

S(U, V, n) = ns0 + n R ln

[(
U
n + an

V

cRT0

)c
n0

V0

(
V

n
− b

)]

, (40)

where a and b are constants. For simplicity, we will consider both gases with the same
a value, so that the coupling terms in the fundamental Eq. (20) can be considered as
vanishing. That is, this case is a simple mixture in which the interactions A − B are
identical to the interactions A− A and B − B. Consequently, the fundamental equation
of the mixture reads

S(UA, UB, V, n A, nB) = SA(UA, V, n A) + SB(UB, V, nB). (41)

In the previous section we showed that we can manipulate the initial conditions
of the system of geodesic equations to reproduce a chemical reaction subject to a
particular constraint; in this section, we will analyze the inverse procedure, that is,
given a system of geodesic equations with certain initial conditions we will study the
thermodynamic trajectories generated by its solutions.

In the previous case, the constant temperature condition of the ideal gas reaction
was equivalent to implying Utotal = const., and, therefore, it was straightforward to
compare the S and φ representations. In fact, the conditions, under which the extremum
principle is valid, were fulfilled in both representations. On the other hand, in the case
of van der Waals gases, the constant temperature condition does not imply that the
total internal energy is constant. Consequently, it is necessary to be cautious when
comparing the experimental conditions in different representations.

For simplicity, we will work just in the Massieu potential φ where temperature is
a independent variable. Performing the change of representation from S to φ through

the Eqs. (26), (27), (28), (40) and considering the equation of state Ui = ci ni R

β
− n2

i a

V
the fundamental equation for the the same initial values as given in Table 1 takes the
form:
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Fig. 4 Surface of the Massieu potential together with the curve of chemical equilibrium (black line) for the
reaction A

(g)
−−⇀↽−− B

(g)
considering A and B as van der Waals gases. The colored lines of (4)b correspond

to the geodesic trajectories analyzed in the next figures. a φ potential together with the curve solution (black
line) of the equilibrium condition (19). b φ potential together with the geodesic and equilibrium solutions.
Different initial conditions: ξ(0) = 0.01 (red line), and ξ(0) = 0.99 (blue line) (Color figure online)

φ(β, ξ) = 1 − 3

2
R

(

1 + ln
β

3
2 R

)

+ ξ

(
1 − 3

2
R ln 2 + R ln

20 − bξ

ξ

)

−(1 − ξ)

(
1

10
aβξ − R ln

20 − b + bξ

1 − ξ

)
. (42)

Moreover, we will consider the constants a = 506 J L mol−2 and b =
0.050 L mol−1 -which are quite reasonable for real gases [19].

The plot of the surface φ(β, ξ) is displayed in Fig. 4. The general solution of the
chemical equilibrium condition (19) in this representation is a function β(ξ), its image
curve in the potential surface φ corresponds to the black line in the Fig. 4. Given
an initial condition for the thermodynamic system (an initial point on the surface),
the extremum principle dictates its evolution to β constant. However, if we do not
restrict the temperature value, there are many trajectories along which the system can
evolve until it reaches a point of the black line (they just must satisfy the Prigogine
statements discussed in the Sect. 2.2), which will correspond to different conditions of
the chemical reaction. In the next subsection, we will calculate the trajectory generated
by the geodesic equations for the same initial conditions as for the ideal gases in the
Massieu representation.

4.2 Geometrothermodynamics

From (42) one can compute all the components of the metric tensor. The explicit
expressions are quite cumbersome and cannot be written in a compact form. The
curvature scalar is in general different from zero, indicating the presence of thermo-
dynamic interaction. This is in accordance with the statistical approach to the van der
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(a) (b)

Fig. 5 Behaviour of the geodesic solutions of the system (43)–(44) (profile ξ vs. τ ) for the reaction
A

(g)
−−⇀↽−− B

(g)
with β(0) = 1

300 K −1 and β̇(0) = 0, considering A and B as van der Waals gases. a

Solution of the geodesic Eqs. (43) and (44) for ξ(0) = 0.01 and different initial “velocities” ξ̇ (0). b
Solution of the geodesic Eqs. (43) and (44) for ξ(0) = 0.99 and different initial “velocities” ξ̇ (0)

Waals gas in which, as a result of the interaction between the particles of the gas, the
corresponding Hamiltonian possesses a non-trivial potential term.

All the Christoffel symbols are different from zero so that the geodesic equations
contain all the independent terms

d2

dτ 2 β(τ)+Γ
β
ββ

(
d

dτ
β(τ)

)2

+ 2Γ
β
βξ

(
d

dτ
β(τ)

)(
d

dτ
ξ(τ )

)
+ Γ

β
ξξ

(
d

dτ
ξ(τ )

)2

= 0,

(43)

d2

dτ 2 ξ(τ )+Γ
ξ
ξξ

(
d

dτ
ξ(τ )

)2

+ 2Γ
ξ
βξ

(
d

dτ
β(τ)

)(
d

dτ
ξ(τ )

)
+ Γ

ξ
ββ

(
d

dτ
β(τ)

)2

= 0.

(44)

This system is solved numerically with initial values for ξ very close to ξ(0) = 0

and ξ(0) = 1, arbitrary initial “velocities” ξ̇ (0), β(0) = 1

300
and ˙β(0) = 0.

The results are displayed in Figs. 5 and 6. It is remarkable that the condition of
constantβ is not mantained along the geodesic, but the image of all the curves in Fig. 5a,
b is the same in the patch of the manifold E . Considering this fact, it is obvious that
they depict the same trajectory over the potential surface φ, as it is shown in Fig. 4b. It
should be evident that if we change both ξ̇ (0) and β̇(0) we will get different trajectories
starting from the same point. This will be useful to describe the quasistatic evolution
under different conditions and to get a general criterion for joining the initial and final
equilibrium states.

The important fact about the results obtained in this section is that starting from
geometric conditions on E we obtain valid thermodynamic trajectories over the ther-
modynamic potential surface φ(β, ξ) that satisfy the Prigogine statements and describe
the quasistatic evolution of the chemical reaction A(g)

−⇀↽− B(g) under particular
conditions.
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(a) (b)

Fig. 6 Solution of the geodesic system (43)–(44) (profile ξ vs. β) for the initial conditions considered in
figure (5). a Image of the curves displayed in 5a in terms of the coordinates of the manifold E in the Massieu
representation φ. b Image of the curves displayed in 5b in terms of the coordinates of the manifold E in the
Massieu representation φ

5 Arbitrary species

In the previous sections, we analyzed two particular chemical reactions with only
two species. In both cases, we found that the corresponding equilibrium manifold E
reduces to a 2-dimensional manifold, once the conditions of the reaction are taken into
account. The question arises whether the dimension of E increases as the number of
reactants and products of the reaction increases. We will show in this section that GTD
can handle in a simple manner the chemical reaction of any arbitrary (finite) number
of species in a closed system.

Consider the chemical reaction of r species described by the variables Si , Ui , Vi ,
and ni (i = 1, . . . , r). In the entropy representation, for instance, the thermo-
dynamic properties of each substance is determined by the fundamental equation
Si = Si (Ui , Vi , ni ). Each fundamental equation Si generates a 3-dimensional equilib-
rium space Ei for the i-species. According to Eq. (20), the fundamental equation of the
chemical system Φ = Φ(S1, . . . , Sr ) = Φ(Ui , Vi , ni ) will depend on 3r variables.
Then, the total equilibrium space E has 3r dimensions. In general, the level of com-
putational difficulty in geometry increases with the number of dimensions, so that for
large r the calculations could easily be outside the reach of computational capability.
However, we can use the conditions of the reaction to reduce the number of dimen-
sions. A common condition for reactions involving gases is that the reaction occurs at
constant volume so that the functional dependence of the fundamental equation can
be reduce to 2r , i.e., Φ = Φ(Ui , ni ). Furthermore, using the definition of the extent of
reaction parameter, Δni = νiξ , we can replace all the ni ’s variables by ξ , according
to ni = ni,0 + νiξ . Since ni,0 and νi are constants, the functional dependence of the
fundamental equation reduces to Φ = Φ(Ui , ξ). Using the equations of state for each
species, we can express each Ui in terms of U, ni and other constants. For instance,
in the case of ideal gases we have that
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U =
∑

i

Ui =
∑

i

ci ni RT = RT
∑

i

ci (ni,0 + νiξ). (45)

Then, we can express each Ui as

Ui (U, ξ) = ci (ni,0 + νiξ)
∑

j c j (n j,0 + ν jξ)
U, (46)

so that the fundamental equation becomes Φ = Φ(U, ξ). Consequently, the cor-
responding equilibrium manifold is 2-dimensional, independently of the number of
species.

In the case of more complicated fundamental equations, it is always possible to
express each Ui in terms of U and the extent of reaction in such a way that the
resulting equilibrium manifold has only two dimensions. For instance, in the case of
van der Waals gases, we obtain

Ui (U, ξ) = ci (ni,0 + νiξ)
∑

j c j (n j,0 + ν jξ)

⎛

⎝U + a

V

∑

j

(n j,0 + ν jξ)2

⎞

⎠ − a

V
(ni,0 + νiξ)2.

(47)

Let us now investigate the geodesic equations. To construct the metric g of the equi-
librium manifold E , we can use the thermodynamic potential Φ(U, ξ) or any other
potential that can be obtained from Φ(U, ξ) by means of a Legendre transformation
(basically, Φ̃(β, ξ)). The results do not depend on the choice of Φ, because the geo-
metric properties of E in GTD are Legendre invariant. If we take, for instance, the
potential Φ(U, ξ), the geodesic equations can be written in general as

d2

dτ 2 U (τ ) + Γ U
UU

(
d

dτ
U (τ )

)2

+ 2Γ U
Uξ

(
d

dτ
U (τ )

) (
d

dτ
ξ(τ )

)
+ Γ U

ξξ

(
d

dτ
ξ(τ )

)2

= 0,

(48)

d2

dτ 2 ξ(τ ) + Γ
ξ
ξξ

(
d

dτ
ξ(τ )

)2

+ 2Γ
ξ

Uξ

(
d

dτ
U (τ )

)(
d

dτ
ξ(τ )

)
+ Γ

ξ
UU

(
d

dτ
U (τ )

)2

= 0.

(49)

According to the Picard–Lindelöf theorem [20], given an initial value, i.e., ξ(0), ξ̇ (0),

U (0) and U̇ (0), if E is smooth—as in the preceding cases, the solution to this equation exists
and is unique. In the case of a chemical reaction, the values of ξ(0) and U (0) are fixed by
the initial equilibrium state of the reaction, but the values of ξ̇ (0) and U̇ (0) remains free.
Thus, different trajectories over the manifold ending in the chemical equilibrium point can
be reproduced by geodesic curves, all of them falling over the potential surface (S), and in
consequence corresponding to quasistatic processes as the GTD programme suggests [13].
This general result will be independent of the chosen potential.

On other hand, we have seen in the examples above that at the final equilibrium state of
the reaction the numerical integrator detects a “singularity”. It turns out that this corresponds
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to a coordinate singularity of the metric. To see this, we calculate the component (ξξ) of
the general metric (15), and obtain

gξξ =
(

ξ
∂Φ

∂ξ

)−1
∂2Φ

∂ξ2 =
(

ξ
∑

i

νi μi

T

)−1 (
∑

i

νi

T

)
∂μi

∂ξ
. (50)

This expression is valid for Φ = S and all the thermodynamic potentials that can be
obtained from S by means of any Legendre transformations-except those which change the
role of ξ . It is easily seen that as soon as the chemical-reaction equilibrium condition (19)
is satisfied, the denominator goes to zero and, thus, the metric is not well defined. This
means that at the final equilibrium point the coordinates are not appropriate to describe the
equilibrium manifold. Notice that this result is completely general since it does not depend
on the particular reaction that determines the potential Φ. Also, if the initial conditions do
not hold along the curve in such a way that a particular chemical potential changes, the final
equilibrium state condition,

∑
i νiμi = 0, will take this change into consideration.

The fact that the final equilibrium state is characterized by a coordinate singularity allows
us to perform an analytical investigation of that particular point. Consider, for instance, the
metric (34) for two ideal gases in the S-representation. The component gξξ presents a
physical divergence when 1− R ln(2

√
2 ξ)+ R ln(1−ξ) = 0. The solution of this equation

ξ f = 1

1 + 2
√

2 e−1/R
, (51)

with R = 8.314 gives ξ f ≈ 0.285 which is exactly the value obtained in the numerical
investigating of the geodesic equations for this metric.

Finally, let us mention an additional invariance property of the GTD approach. To reduce
the number of independent variables of the fundamental equation we used the condition V =
const. However, due to the invariance of the metric g under changes of coordinates, we can
also use the restriction U = const. or β = const. (according to the physics of the problem),
then the resulting fundamental equation becomes Φ(V, ξ). The corresponding metric can be
computed and the geodesic equations can be integrated numerically for V and ξ . The general
results (coordinate singularity of the equilibrium condition and correspondence between
geodesic and quasistatic processes) will be maintained under this change of coordinates.

6 Conclusions

In this work, we used the formalism of GTD to present a geometric representation of chemi-
cal reactions in closed systems. In GTD, all the information about a thermodynamic system
is encoded in its equilibrium manifold determined by a metric which is invariant under
Legendre transformations, i.e., its properties do not depend on the choice of thermody-
namic potential.

First, we consider the case of a chemical reaction with only two species corresponding
either to ideal gases or to van der Waals gases. In the case of ideal gases, we found that
the equilibrium manifold is flat, independently of the thermodynamic potential. In GTD, a
vanishing curvature means that there is no thermodynamic interaction. This agrees with the
interpretation from the point of view of statistical mechanics and thermodynamics: With the
statistical point of view, because the molecules of each ideal gas behave as “free particles”
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since the Hamiltonian contains exclusively the kinetic part; and with the thermodynamic
point of view, because there are no coupling terms in the fundamental Eq. (23). In the
case of van der Waals gases, the curvature is different from zero, indicating the presence of
thermodynamic interaction. This is also in accordance with the statistical approach to the van
der Waals system, because the Hamiltonian contains a potential term which is responsible
for the interaction between the molecules of the system.

Our results indicate that thermodynamic trajectories compatible with the Prigogine state-
ments can be obtained by using a geometric approach. In this way, we go one step further
from the classical thermodynamic’s analysis where the criterion to join the initial and final
equilibrium states is not unique. Additionally, it was shown that the metric possesses a
coordinate singularity exactly at the point where the condition for the reaction equilibrium
is satisfied. In analogy with the coordinate singularities present in black holes, that point
could be denoted as a “chemical horizon”.

In order to understand our results in a more general fashion, we analyzed a general
reaction in the context of GTD. We showed that using the conditions of thermodynamic
equilibrium and the laboratory conditions of the reaction, it is always possible to reduce to
two the number of dimensions of the equilibrium manifold. This is an interesting result that
allows us to describe any chemical reaction as a geodesic curve on a 2-dimensional space.

The examples of chemical reactions presented in this work involve only gases. Never-
theless, the generalization to include reactions involving solids or liquids can be done. We
only need to fix the experimental conditions that allow us to reduce the equilibrium states
manifold to the 2-dimensional case.

Summarizing, the main conclusions of this work are: to any chemical reaction in a closed
system we can associate a 2-dimensional equilibrium manifold, the chemical equilibrium
condition corresponds to a coordinate singularity of the metric (15) and any chemical reac-
tion can be represented as a geodesic in the associated manifold E .
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